DEVIASI, DIFRAKSI, DEPERSI, INTERFERENSI, POLARISASI CAHAYA

Posted by keep.crazy in Dec 14, 2010, under Uncategorized

a. Pemantulan Gelombang (Refleksi Gelombang)

gambar:refraksi gelombang.jpg

gambar:refraksi gelombang.jpg

Pemantulan gelombang pada tangki riak, pada pemantulan ini diperoleh gelombang lingkaran yang pusatnya adalah sumber gelombang S. Gelombang pantul yang dihasilkan oleh bidang lurus juga berupa gelombang lingkaran S sebagai pusat lingkaran. Jarak S ke bidang pantul sama dengan jarak s ke bidang pantul.
Menurut Hukum Snellius, gelombang dating, gelombang pantul, dan garis normal berada pada satu bidang dan sudut dating akan sama dengan sudut pantul, seperti tampak pada gambar berikut:
Untuk gelombang dua atau tiga dimensi seperti gelombang air, kita mengenal dengan istilah sinar gelombang dan muka gelombang.

Muka Gelombang

gambar:gelombang tampak muka.jpg


Muka gelombang (Front wave) didefinisikan sebagai tempat kedududkan titik – titik yang memiliki fase yang sama pada gelombang, pada gambar di samping ini menunjukkan lingkaran – lingkaran tersebut merupakan muka gelombang. Jarak antara muka gelombang yang berdekatan sama dengan satu gelombang (λ). Sinar gelombang adalah garis yang ditarik dengan arah tegak lurus terhadap muka gelombang

gambar:sinar gelombang.jpg

Bila gelombang melingkar merambat terus kesegala arah maka pada jarak yang jauh dari sumber gelombang, kita akan melihat muka gelombang yang hamper lurus, seperti halnya gelombang air laut yang sampai dipantai. Muka gelombang yang seperti ini disebut sebagai muka gelombang bidang.

b. Pembiasan Gelombang (Refraksi Gelombang)

Pada pemantulan gelombang, gelombang yang tiba di batas medium akan dipantulkan ke arah semula. Pada pembiasan, gelombang yang mengenai bidang batas antara dua medium, sebagian akan dipantulkan dan sebagian lagi akan diteruskan atau dibiaskan. Gelombang yang dibiaskan ini akan mengalami pembelokan arah dari arah semula tergantung pada mediumnya.
Pada medium kedua, cepat rambat gelombang mengalami perubahan dan perubahan ini pun tergantung pada mediumnya. Dengan kata lain, pembiasan gelombang adalah pembelokan arah lintasan gelombang etelah melewati bidang batas antara dua medium yang berbeda.

gambar:refraksi gelombang1.jpg

gambar:refraksi gelombang1.jpg

Gambar pembiasan sinar dari udara ke air


Pada gambar diatas diperlihatkan pembiasan cahaya dari medium udara dengan indeks bias n, ke medium air yang memiliki indeks bias n2. Menurut Hukum Snellius tentang pembiasan:
1. Sinar datang, garis normal, dan sinar bias, terletak pads satu hidang datar.
2. Sinar yang datang dari medium dengan indeks bias kecil ke medium dengan indeks bias yang lebih besar dibiaskan mendekati garis normal, dan sebaliknya.
3. Perbandingan nilai sinus sudut datang (sin i) terhadap sinus sudut bias (sin r) dari satu medium ke medium lainnya selalu tetap. Perbandingan ini disebut sehagai indeks bias relatif suatu medium terhadap medium lain. Secara matematis Hukum Snellius dapat dirumuskansebagai berikut:

n1 sin⁡ i = n2 sin⁡ r

atau

n2 /n1 = sin⁡ i / sin ⁡r

Dengan n1 adalah indeks bias medium pertama, n2 adalah indeks bias medium kedua, I adalah sudut dating, dan r adalah sudut bias. Adapun n21 adalah indeks bias relative medium 2 terhadap medium 1. Indeks bias mutlak didefinisikan sebagai berikut:

n= c/v

Dengan :
C = laju cahaya di ruang hampa
V = laju cahaya dalam suatu medium
Indeks bias mutlak ruang hampa (n1 = 1) ke dalam air (n2), indeks bias n2 menjadi indeks bias mutlak dan dituliskan sebagai berikut:
n2= sin⁡ i / sin ⁡r

gambar:gelombang bias a.jpg

Gambar (a) menunjukkan gelombang air merambat dari satu medium menuju ke medium lain setelah melewati bidang batas antara kedua medium, gelombang tersebut mengalami pembelokan. Pada peristiwa tersebut terjadi perubahan arah rambat gelombang dan panjang gelombang λ2 lebih pendek dari pada λ1.

gambar:gelombang bias b.jpg

Gambar (b) menunjukkan adanya perubahan kecepatan gelombang. Gelombang merambat dari medium yang memiliki indeks bias n1 ke medium lain dengan indeks bias n2.


Keterangan :
(a) Perubahan panjang gelombang, λ2 lebih pendek dari pada λ1.
(b) Perubahan kecepatan gelombang, v2 lebih kecil dari pada v1.

Dari kedua gambar tersebut diturunkan persamaan pembiasan gelombang sebagai berikut:


sin⁡i/sin⁡r  = v1/v2 = (fλ1)/(fλ2 )= λ12

Dari satu medium ke medium lainnya, frekuensi gelombang tetap. Jadi yang mengalami perubahan adalah kecepatan dan panjang gelombang

Pemantulan Sempurna

gambar:pemantulan sempurna.jpg

Pemantulan sempurna dapat terjadi jika sinar datang dari medium rapat ke medium kurang rapat (udara), dan sudut dating melampaui sudut kritisnya.
Penerapan hukum snellius pada pemantulan sempurna memenuhi persamaan seperti dibawah ini, dengan mengetahui perbandingan indeks bias mutlak n1 dan n2 , sudut kritis cahaya dari suatu medium dapat ditentukan.
n2 sin⁡ ik= n1 sin⁡ r,dengan r =900 sehingga n2 sin⁡ ik = n1

sin ik= n1/n2

Secara umum sifat – sifat gelombang adalah:
1) Dapat mengalami pemantulan atau refleksi;
2) Dapat mengalami pembiasan atau refraksi;
3) Dapat mengalami superposisi atau interferensi;
4) Dapat mengalami lenturan atau difraksi, dan;
5) Dapat mengalami pengutuban atau polarisasi.

c. Interferensi Gelombang

gambar:interferensi gelombang.jpg

Keterangan:
(a) Dua Gelombang Sefase
(b) Dua gelombang berlawanan fase

Dua gelombang disebut .sefase. jika kedua gelombang tersebut memiliki frekuensi sama dan pada setiap saat yang sama memiliki arah simpangan yang sama pula. Adapun dua gelombang disebut berlawanan fase, jika kedua gelombang tersebut memiliki frekuensi sama, dan pada setiap seal yang sama memiliki arah simpangan yang berlawanan.
Untuk mengamati interterensi dari dua buah gelombang dapat digunakan sebuah tangki rink (ripple tank). Pertemuan kedua gelombang akan mengalami inter¬ferensi..lika pertemunan kedua gelombang saling menguatkan, disebut interf reusi maksimum atau interferensi konstruktif. Peristiwa ini terjadi jika pada titik pertemuan tersebut kedua gelombang sefase. Akan tetapi, jika pertemuan gelombang saling melemahkan, disebut interferensi minimum atau interferensi destruktif. Peristiwa ini terjadi jika pada titik pertemuan tersebut kedua gelombangnya berlawanan fase.
Jika dua gelombang sefase dan dua gelombang berlawanan fase mengalami interferensi, akan didapatkan seperti gambar dibawah ini:

gambar:interferensi.jpg

Keterangan:
(a) Interferensi maksimum dua gelombang sefase
(b) Interferensi minimum dua gelombang berlawanan fase

d. Difraksi gelombang

gambar:Difraksi Gelombang.jpg

Peristiwa difraksi atau lenturan dapat terjadi jika sebuah gelombang melewati sebuah penghalang atau melewati sebuah celah sempit. Pada suatu medium yang serba sama, gelombang akan merambat lurus. Akan tetapi, jika pada medium tersebut gelomhang terhalangi, bentuk dan arah perambatannya dapat berubah.
Perhatikan Gambar diatas. Sebuah gelombang pada permukaan air merambat lurus. Kernudian, gelombang tersebut terhalang oleh sebuah penghalang yang memiliki sebuah celah sempit. Gelombang akan merambat melewati celah sempit tersebut. Celah sempit seolah-olah merupakan sumber gelomhang baru. Oleh karena itu. setelah melewati celah sempit gelombang akan merambat membentuk Imgkaran-lingkaran dengan celah sempit tersebut sebagai pusatnya.

e. Dispersi Gelombang

gambar:dispersi gelombang.jpg

Perubahan bentuk gelombang ketika melewati suatu medium disebut disperse gelombang.
Gelombang longitudinal, seperti gelombang bunyi, kecil sekali mengalami disperse atau bahkan tidak sama sekali. Sifat inilah yang digunakan dalam pencitraan dengan mengunakan USG (Ultra Sonografi).
Gelombang cahaya mengalami disperse. Dengan sifat disperse gelombang cahaya pada prisma, kita dapat menentukan lebar spektrum matahari. Misalkan cahaya polikromatik (cahaya matahari) dilewatkan pada prisma dengan indeks bias n2 dalam medium berindeks bias n1, dan sudut pembias β seperti pada gambar dibawah ini.

Besar sudut yang dibentuk antara sinar yang masuk ke prisma dan yang keluar prisma disebutsudut deviasi, yang besarnya dapat ditulis sebagai berikut:

D=i+r’- β

Keterangan:
β = sudut pembias prisma
i = besar sudut cahaya dating ke prisma
r’ = besar sudut cahaya saat meninggalkan prisma

Dengan menggunaka hukum Snellius, kita dapat menghitung sudut deviasi minimum sebagai berikut:

Dm=2i-β

Bila sudut pembias lebih besar dari 150 (β > 150) besar sudut deviasi minimum n1 sin ((Dm+ β))/2= n_2 sin⁡(β/2)
Bila sudut pembias lebih kecil dari 150 (β < 150) maka

Dm =(n2/n1 – 1)β
Keterangan:
n1 = indeks bias medium di sekitar prisma, bila udara n = 1
n2 = indeks bias prisma
Dm = sudut deviasi minimum (derajat)

Sudut Dispersi

Bila cahaya putih (polikromatik) atau cahaya matahari melewati suatu prisma maka cahaya yang keluar dari prisma berupa spektrum cahaya matahari yang terdiri atas warna merah, jingga, kuning, hijau, biru, nilla, dan ungu. Penguraian warna polikromatik menjadi warna monokromatik yang disebabkan oleh perbedaan cepat rambat dari masing – masing warna disebut dengan disperse. Setiap warna cahaya memiliki sududt deviasi minimum masing – masing.
Selisih deviasi warna ungu dengan warna merah disebut sudut dispersi. Jadi, lebar sudut disperse atau lebar spectrum matahari dapat dinyatakan sebagai berikut:

φ= (nμ- 1)β – (nm- 1)β atau
φ= (nμ- nm )β

Dengan:
nµ = indeks bias sinar ungu
nm = indeks bias sinar merah
φ = sudut disperse
β = sudut pembias prisma

f. Polarisasi Gelombang

Gelombang yang hanya merambat pada satu bidang disebut gelombang terpolarisasi linier, sedangkan gelombang yang merambat tidak pada satu bidang disebut gelombang takterpolarisasi.

gambar:polarisasi gelombang.jpg

Keterangan :


(a) Gelombang terpolarisasi linier pada arah vertical

(b) Gelombang terpolarisasi linier pada arah horizontal
(c) Gelombang takterpolarisasi
Gelombang cahaya terpolarisasi adalah gelombang cahaya yang getarannya hanya dalam satu bidang, proses untuk mengubah cahaya takterpolarisasi menjadi cahaya terpolarisasi dikenal sebagai polarisasi.


// If comments are open, but there are no comments.

Leave a Reply